NAND Gate 又叫与非门,可以理解为与门和非门的组合,用逻辑表达式为:Y=abY=\overline{a\cdot b}

NAND as NOT

NOT 是一个单输入的逻辑门,用逻辑表达式为:Y=aY=\overline{a}

因为 aa=aa\cdot a = a 所以 Y=aa=aY = \overline{a\cdot a} = \overline{a}

/**
 * Not gate:
 * out = not in
 */

CHIP Not {
    IN in;
    OUT out;

    PARTS:
    // Put your code here:
    Nand(a = in, b = in, out = out);
}

NAND as AND

AND Gate 是一个两输入的逻辑门,用逻辑表达式为:Y=abY=a\cdot b, 其中 aabb 分别是输入的两个端口。

NAND Gate 逻辑表达式为:Y=abY=\overline{a\cdot b} ,我们想要得到 aba\cdot b ,只需要对 YY 做一个取反操作即可,即:Y=ab=abY' =\overline{\overline{a\cdot b}} = a\cdot b

/**
 * And gate:
 * out = a and b
 */

CHIP And {
    IN a, b;
    OUT out;

    PARTS:
    // Put your code here:
    Nand(a = a, b = b, out = nandOut);
    Nand(a = nandOut, b = nandOut, out = out); // Not(in = nandOut, out = out);

NAND as OR

OR Gate 是一个两输入的逻辑门,用逻辑表达式为:Y=a+bY=a+b, 其中 aabb 分别是输入的两个端口。

NAND Gate 逻辑表达式为:Y=abY=\overline{a\cdot b} ,根据 DeMorgan's law,我们可以得到 Y=ab=a+bY = \overline{a\cdot b} = \overline{a}+\overline{b} ,那如果我们在输入 aabb 的时候,分别对他们进行取反操作让输入变成 a\overline{a}b\overline{b}, 则可得到:

Y=ab=a+b=a+bY=\overline{\overline{a}\cdot \overline{b}} = \overline{\overline{a}}+\overline{\overline{b}}=a+b
/**
 * Or gate:
 * out = a or b
 */

CHIP Or {
    IN a, b;
    OUT out;

    PARTS:
    // Put your code here:
    Nand(a = a, b = a, out = nota);
    Nand(a = b, b = b, out = notb);
    Nand(a = nota, b = notb, out = out);
}

NAND as NOR

NOR Gate 是一个两输入的逻辑门,用逻辑表达式为:Y=a+bY=\overline{a+b}, 其中 aabb 分别是输入的两个端口。

上面已经有了 OR 的实现和 NOT 的实现,直接用 OR 和 NOT 就可以得到 NOR 的实现,即:

/**
 * Nor gate:
 * out = a nor b
 */

CHIP Nor {
  IN a, b;
  OUT out;

  PARTS:
  // Put your code here:
  //Or(a = a, b = b, out = out);
  Nand(a = a, b = a, out = nota);
  Nand(a = b, b = b, out = notb);
  Nand(a = nota, b = notb, out = orOut);
  Nand(a = orOut, b = orOut, out = out);

NAND as XOR

XOR Gate 是一个两输入的逻辑门,用逻辑表达式为:Y=ab=ab+abY=a\oplus b=a\cdot \overline{b}+\overline{a}\cdot b, 其中 aabb 分别是输入的两个端口。

这里我们需要用到两个 AND,两个 NOT,一个 OR,所以一共需要九个Nand,即:

/**
 * Xor gate:
 * out = a xor b
 */

CHIP Xor {
  IN a, b;
  OUT out;

  PARTS:
  // Put your code here:
  Nand(a = b, b = b, out = notb);
  Nand(a = a, b = notb, out = nandanotb);
  Nand(a = nandab, b = nandab, out = aandnotb);
  Nand(a = a, b = a, out = nota);
  Nand(a = nota, b = b, out = nandnotab);
  Nand(a = nandnotab, b = nandnotab, out = notaandb);
  Nand(a = aandnotb, b = aandnotb, out = NOTaandnotb);
  Nand(a = notaandb, b = notaandb, out = NOTnotaandb);
  Nand(a = NOTaandnotb, b = NOTnotaandb, out = out);
}

这个实现用到了过多的 NAND,我们想办法优化一下,注意观察图中红框里的部分,这部分是明显就是两次 NOT: 这两次 NOT 叠加之后就相当于什么事情都没干,所以我们可以把这部分干掉,就剩下五个 Nand,即: 其实我们还可以对这个门进行一次简化,用四个 NAND 来实现 XOR(这里如果全部用逻辑运算写的话太复杂,我直接在公式里使用 NAND 了):

Y=ab=ab+ab=NAND((ab),(ab))=NAND(a+b,b+a)=NAND(a+(ab),b+(ab))=NAND(NAND(a(ab)),NAND(b(ab)))=NAND(NAND(a(NAND(a,b))),NAND(b(NAND(a,b))))\begin{aligned} Y &=a\oplus b\\ & =a\cdot \overline{b}+\overline{a}\cdot b\\ & =NAND\big(\overline{(a\cdot \overline{b})}, \overline{(\overline{a}\cdot b)}\big)\\ & =NAND(\overline{a}+b, \overline{b}+a)\\ & =NAND\big(\overline{a}+(a\cdot b), \overline{b}+(a\cdot b)\big)\\ & =NAND\Big(NAND\big(a\cdot (\overline{a\cdot b})\big), NAND\big(b\cdot (\overline{a\cdot b})\big)\Big)\\ & =NAND\Bigg(NAND\Big(a\cdot\big(NAND(a,b)\big)\Big), NAND\Big(b\cdot\big(NAND(a,b)\big)\Big)\Bigg)\\ \end{aligned}
/**
 * Xor gate:
 * out = a xor b
 */
CHIP Xor {
  IN a, b;
  OUT out;
  PARTS:
  // Put your code here:  Nand(a = a, b = b, out = nandAB);
  Nand(a = a, b = nandAB, out = nandABA);
  Nand(a = b, b = nandAB, out = nandABB);
  Nand(a = nandABA, b = nandABB, out = out);